Course Code	20ES1303	Year	II	Semester	Ι
Course Category	Engineering Science	Branch	ME	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Chemistry of Materials
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

MATERIAL SCIENCE AND METALLURGY

Course	Unit	Level	
Upon su			
CO1	Understand crystallography, constitution of alloys, Heat treatment Processes	1,2,3,4,5	L2
	and properties of ferrous and non-ferrous metals.		
CO2	construct the phase diagrams of materials and illustrate the concept of	2	L3
	Strengthening Mechanisms		
CO3	interpret heat treatment and surface hardening techniques	3	L3
CO4	Appraise properties of different stainless steels, tool steels, cast irons and non-	4	L4
	ferrous materials		
CO5	Establish features of ferrous, non-ferrous alloys and composite materials	5	L4

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	1		2					2			3	2
CO2	2	3	1		2					2			3	2
CO3	2	2	2	1	2					2			3	2
CO4	2	2	2	1	2		1			2			3	2
CO5	2	2	2	1	2		1			2			3	2

Syllabus				
Unit No.	Contents	Mapped CO		
1	Materials Science and Engineering: Introduction, Classification of Materials, Mechanical Properties of Materials, Case Study: Delhi Iron Pillar and Wootz Steel. CRYSTALLOGRAPHY: Unit cell, Classification, Bravais Lattices, packing factor and coordination number in cubic systems, Miller Indices for Cubic systems, imperfections in solids: Point, Line and Volume, Slip and Twinning. Determination of grain size.	CO1		
2	 Mechanism of Crystallization: Nuclei Formation, crystal growth CONSTITUTION OF ALLOYS: Types of solid solution- substitutional and interstitial solid solutions, Hume Rothery rules for solid solution. PHASE DIAGRAMS: Phase, Phase equilibrium, Gibbs Phase rule – one component system, two component system, Construction of binary phase diagram, Isomorphous, eutectic, eutectoid, peritectic and peritectoid systems, Fe-Fe₃C equilibrium diagram, Lever rule: Isomorphous. STRENGTHENING MECHANISMS: Grain Refinement, Strain hardening, solid solution strengthening, Dispersion strengthening. 	CO1,2		

3	 HEAT TREATMENT PROCESSES: stages of heat treatment, TTT and CCT diagram of eutectoid steel, Annealing: Full Annealing, Spherodizing, Stress Relief Annealing, Process Annealing, Normalizing, Hardening, Tempering, Austempering, Martempering. CASE HARDENING: Flame hardening, Induction hardening, Carburizing, Cyaniding, Nitriding. 	CO1,3
4	STEELS: STAINLESS STEELS : Ferritic, Martensitic, Austenitic, Tool steels: Water Hardened, Shock Resistance, Cold-Work, Hot-Work Tool Steels, Applications and Properties. CAST IRONS: Structure, Properties and Applications of White Cast iron, Malleable Cast iron, Grey cast iron, Spheroidal graphite cast iron.	CO1,4
5	 NON-FERROUS METALS AND ALLOYS: Properties and Applications of Copper and its alloys: Cartridge Brass, Cupronickel, Gun Metal, Naval Brass, Bell Metal, Phosphor Bronze. ALUMINIUM AND ITS ALLOYS: Properties and Applications of Duralumin, Hindalium, Magnalium, Aluminium–Scandium, TITANIUM AND ITS ALLOYS: Properties and Applications of α and Near α, β Alloys, α-β Alloys. COMPOSITE MATERIALS: Classification of composites, particle reinforced materials, fiber reinforced composite materials and metal matrix composites. 	CO1,5

Learning Resources

Text Book(s):

- 1. R.Balasubramaniam, Callister's, Material Science and Engineering, 2/e, WileyIndia, 2014.
- **2.** S.H. Avner, Introduction to Physical Metallurgy, 2/e, Tata McGrawHill, 1997.

Reference Books:

- 1. Donald R. Askeland, "Essential of Materials Science and Engineering", Thomson Learning, 5 th Edition 2006
- 2. V.D. Kodgire, "Material Science and Metallurgy", Everest Publishing House 25th Edition 2009.
- 3. B.K.Agarwal, "Introduction to Engineering Materials", Tata McGraw Hill-1stEdition.
- 4. V. Raghavan, "Material Science and Engineering",-PHI Learning 5th Edition.

E Resources & other Digital Material:

http://materials.iisc.ernet.in/~wootz/heritage/WOOTZ.htm

http://met.iisc.ernet.in/~rangu/text.pdf

https://nptel.ac.in/courses/113106032/

https://nptel.ac.in/courses/113107078/

http://vvm.org.in/study_material/ENG%20-%20Indian%20Contributions%20to%20Science.pdf